

Datasheet

TSE34

Thermopile Temperature Sensor

TO-39 Package

Features

- Non-contact surface temperature measuring
- TO housing with an F5.5 infrared filter
- Using IC for ambient temperature compensation
- Suitable for human body temperature detecting and Industrial temperature measurement
- FOV 80° (The test distance and test area will be determined by the FOV)
- High sensitivity, standard accuracy of $\pm 2\%$

Applications

- Non-contact infrared thermometer
- Automatic induction equipment
- Heating, Ventilation and Air Conditioning(HVAC)
- Appliance

Descriptions

The TSE34 is a digital interface thermopile temperature sensor based on MEMS (Micro-ElectroMechanical Systems) technology. This thermopile detector consists of a thermopile MEMS chip, silicon filter, a mixed signal processor IC and a small size TO-39 package.

Table 1 Pin Names and Description

Pin	Function	Description
1	VCC	External power supply pin.
2	SDA	IIC serial data pin.
3	SCL	IIC serial clock pin.
4	GND	Ground pin.

Figure 1 Thermopile TSE34

上海矽睿科技股份有限公司 https://www.qstcorp.com

Document No. : SP- MEMS-048

Outline of Sensor Package

Figure 2 Outline of Sensor Package

Sensitivity Output Curve

Figure 3 Filter Transmission Curve

ABSOLUTE MAXIMUM RATING						
Parament	Min	Туре	Max	Unit		
Supply Voltage(VDD)	-0.3		6.5	V		
Digital output voltage	-0.3		VDD+0.3	V		
ESD Susceptibility(HBM)		2		kV		
Storage temperature	-40		125	°C		

上海矽睿科技股份有限公司 https://www.qstcorp.com

ELECTRICAL CHARACTERISITICS							
Parameter	Symbol	Min	Туре	Max	Unit		
Supply Voltage	VDD	3.0		5.5	V		
Operation temp	Та	-40		125	°C		
Supply Current@25 °C on	IDD		1600		uA		
during conversion							
Standby current	I		200		nA		
Resolution	Ν		24		Bits		
Gain setting	GAIN	1		256			
Integral Nonlinearity	INL			15	ppm of FS		
Field of View			78		Deg		
Power Supply Rejection	PSRR	90	120		dB		

12C INTERFACE

 I^2C bus uses SCL and SDA as signal lines. Both lines are connected to VDDIO externally via pull-up resistors so that they are pulled high when the bus is free. The I^2C device address of TSE34 is shown below.

A7	A6	A5	A4	A3	A2	A1	WR
1	1	1	1	1	1	1	0/1

Table Electrical specification of the I²C interface pins

Symbol	Parameter	Min	Max	Unit
fscl	Clock frequency		400	KHz
t _{low}	SCL low pulse	1.2		us
thigh	SCL High pulse	0.7		us
tsudat	SDA setup time	0.1		us
thddat	SDA hold time	0.0		us
t _{susat}	Setup Time for a repeated start condition	0.6		us
thdsta	Hold time for a stop condition	0.6		us
t _{susto}	Setup time for a stop condition	0.6		us
t _{buf}	Time before a new transmission can start	1.3		us

上海矽睿科技股份有限公司 https://www.qstcorp.com

Figure 4 I²C Timing Diagram

The I2C interface protocol has special bus signal conditions. Start (S), stop (P) and binary data conditions are shown below. At start condition, SCL is high and SDA has a falling edge. Then the slave address is sent. After the 7 address bits, the direction control bit R/W selects the read or write operation. When a slave device recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL (ACK) cycle.

At stop condition, SCL is also high, but SDA has a rising edge. Data must be held stable at SDA when SCL is high. Data can change value at SDA only when SCL is low.

上海砂睿科技股份有限公司 https://www.qstcorp.com